skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohite, Aditya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Betz, Markus; Elezzabi, Abdulhakem Y (Ed.)
    Free, publicly-accessible full text available March 19, 2026
  2. Free, publicly-accessible full text available April 8, 2026
  3. Abstract Twisted moiré photonic crystal is an optical analog of twisted graphene or twisted transition metal dichalcogenide bilayers. In this paper, we report the fabrication of twisted moiré photonic crystals and randomized moiré photonic crystals and their use in enhanced extraction of light in light-emitting diodes (LEDs). Fractional diffraction orders from randomized moiré photonic crystals are more uniform than those from moiré photonic crystals. Extraction efficiencies of 76.5%, 77.8% and 79.5% into glass substrate are predicted in simulations of LED patterned with twisted moiré photonic crystals, defect-containing photonic crystals and random moiré photonic crystals, respectively, at 584 nm. Extraction efficiencies of optically pumped LEDs with 2D perovskite (BA)2(MA)n−1PbnI3n+1ofn= 3 and (5-(2′-pyridyl)-tetrazolato)(3-CF3−5-(2′-pyridyl)pyrazolato) platinum(II) (PtD) have been measured. 
    more » « less
  4. Abstract Excitons, bound electron–hole pairs, in two-dimensional hybrid organic inorganic perovskites (2D HOIPs) are capable of forming hybrid light-matter states known as exciton-polaritons (E–Ps) when the excitonic medium is confined in an optical cavity. In the case of 2D HOIPs, they can self-hybridize into E–Ps at specific thicknesses of the HOIP crystals that form a resonant optical cavity with the excitons. However, the fundamental properties of these self-hybridized E–Ps in 2D HOIPs, including their role in ultrafast energy and/or charge transfer at interfaces, remain unclear. Here, we demonstrate that >0.5 µm thick 2D HOIP crystals on Au substrates are capable of supporting multiple-orders of self-hybridized E–P modes. These E–Ps have high Q factors (>100) and modulate the optical dispersion for the crystal to enhance sub-gap absorption and emission. Through varying excitation energy and ultrafast measurements, we also confirm energy transfer from higher energy E–Ps to lower energy E–Ps. Finally, we also demonstrate that E–Ps are capable of charge transport and transfer at interfaces. Our findings provide new insights into charge and energy transfer in E–Ps opening new opportunities towards their manipulation for polaritonic devices. 
    more » « less
  5. Solvents enable growth of phase-pure two-dimensional perovskites without dissolving three-dimensional perovskite substrates. 
    more » « less
  6. The layer edge states or low energy state (LES) in 2D hybrid organic–inorganic perovskites demonstrate a prolonged carrier lifetime for better performance of optoelectronic devices. However, the fundamental understanding of LES in 2D perovskites is still inconclusive. Herein, a photoluminescence (PL) study of LES in 2D Ruddlesden–Popper perovskites is presented withn = 2 andn = 3 from their cleaved cross sections that are more stable than the natural edge. The PL measurements clearly observe reversible, and irreversible surface relaxations (case I and case II) in three laser intensity ranges, further supported by a PL excitation cycle from low to high laser intensity, and vice versa. The PL wavelength of LES is tunable with laser intensity and blueshifts with increasing laser intensity during irreversible surface relaxation process (case I). Fluorescence lifetime imaging (FLIM) shows that the LES has a longer lifetime than the band‐edge emission in the sample without a photodegradation, while the BE lifetime becomes relatively longer in the area with a photodegradation. The presented laser tunable LES and the related irreversible relaxation process provide a new insight that can help improve the photostability in 2D perovskites and understand roles of LESs in optoelectronic device performance. 
    more » « less
  7. We present a design strategy for fabricating ultrastable phase-pure films of formamidinium lead iodide (FAPbI3) by lattice templating using specific two-dimensional (2D) perovskites with FA as the cage cation. When a pure FAPbI3precursor solution is brought in contact with the 2D perovskite, the black phase forms preferentially at 100°C, much lower than the standard FAPbI3annealing temperature of 150°C. X-ray diffraction and optical spectroscopy suggest that the resulting FAPbI3film compresses slightly to acquire the (011) interplanar distances of the 2D perovskite seed. The 2D-templated bulk FAPbI3films exhibited an efficiency of 24.1% in a p-i-n architecture with 0.5–square centimeter active area and an exceptional durability, retaining 97% of their initial efficiency after 1000 hours under 85°C and maximum power point tracking. 
    more » « less